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1 Introduction

Ten years ago, Hamkins (2012) changed the landscape of the foundations of mathe-
matics, by introducing a novel conception that tried to clarify some ambiguous notions
in current set theoretic practice. In particular, he provided a revolutionary interpreta-
tion for the practice of forcing: a multiverse of di�erent set theoretic universes. Such
an idea immediately sparked an intense debate in the philosophy of set theory and
the foundations of mathematics. In the following years, several crucial contributions
were made by Carolin Antos (2018), Bagaria and Claudio Ternullo (2020), S. Fried-
man (2012), Gitman and Hamkins (2011), Koellner (2009), Maddy (2017), Meadows
(2021), Martin (2001), Steel (2014), C. Ternullo (2019), Väänänen (2014), Venturi
(2020), and Woodin (2011), just to name a few. These contributions can be roughly
divided in two broad categories:

� the general debate between universism (the position that there is a single, de-
termined universe of sets) and pluralism (the position that there are several
universes of sets, all of them equally interesting, i.e. the multiverse);1

� the introduction of novel mathematical characterisations of the set theoretic
multiverse.2

Indeed, while the general idea behind pluralism in the philosophy of mathematics is
more or less the same every time, the actual mathematical details can vary enormously
from one characterisation to the other. We have multiverses based upon di�erent
kinds of forcing3 , multiverses with di�erent background logics4, multiverses that try
to accommodate the highest number of di�erent universes5, etc. Even though all these
di�erent set theoretic multiverses share the same, general, philosophical idea, they

1Examples of such papers are Koellner (2013), Martin (2001) and Maddy (2017).
2For example, Gitman and Hamkins (2011), Steel (2014) and C. Ternullo and S.-D. Friedman (2016).
3For example, Steel (2014) is based upon set-generic forcing, while Venturi (2020) on Robinson
in�nite forcing.

4Väänänen (2014) and S. Friedman (2012) are the prime examples.
5Hamkins (2012) is the maximal multiverse conception, encompassing all possible universes.
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di�er wildly from the mathematical perspective. There are some proposal of assessing
all these di�erences6, but this research �eld is still in its infancy.
One of the goals of this research is categorising all the di�erent multiverses, trying

to draw distinctions between them and maybe de�ning some broad categories or types
of multiverses. This has been done in several, informal ways in the literature: for ex-
ample, C. Antos et al. (2015) distinguishes between realist and anti-realist multiverses,
appealing to known de�nition in the ontology of mathematics.
Another possible distinction can be drawn between multiverses in which the truth

value of set theoretic statements collapses to the truth value of that same statement
in a particular universe of the multiverse vs multiverse that don't collapse in this
way. Or between linear and branching multiverses.7 The linear multiverses expand by
building on all the universes part of the multiverse, while the branching ones admits
�bifurcations�. According to this informal distinction, Steel's set generic multiverse is
a linear multiverse, while Hamkins' multiverse is a branching one.
The problem with most of the distinctions found in the literature and folklore on

the multiverse is that they are exclusively philosophically motivated. While they are
very useful in investigating matters in the foundations and philosophy of mathematics,
we still lack a purely mathematical characterisation of set theoretic multiverses as a
whole.
In this paper, I plan to close this gap, and develop a mathematical method to inves-

tigate the set-theoretic multiverses as a single, uniform structure. To do so, I interpret
the set-theoretic multiverses to be a method to �carve� the collection of all models of
set theories in sub-collections that share some common features. I contend that this
changes the landscape of the research in the set theoretic multiverse in an important
way. While currently each multiverse is investigated singularly, as an isolated entity,
with my proposal it will become possible to approach the class of all multiverses as a
single, uni�ed structure. As an analogy, each single multiverse can be thought of as
an algebra, or a logic, while my approach is similar to Universal Algebra, or Universal
Logic.8 Moreover, I will discuss the main philosophical consequences of this approach
for the debate between universism (the position that claims that there exists only one,
unique set-theoretic universe) and multiversism (the position that instead claims the
existence of several, equally legitimate, set-theoretic universes).

2 The Multiverse Operator

Let M the collection of all models of ZFC, i.e. M = Mod(ZFC) = {M | M |=
ZFC }. All these models are just chaotically in M, but we can de�ne a relation to
try to put some order between them. Consider for example the following relation
R := R(M,N) ⇐⇒ N = M [G], where M,N ∈ M and M [G] is a set-generic
extension of M . Essentially, this R relates two models of ZFC i� one is the set-generic

6See for example Meadows (2022).
7A recent paper that brings up this distinction, in the context of potentialist systems, is Hamkins
and Linnebo (2022).

8See for example Beziau (2007).
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extension of the other. We can now de�ne the closure of R by taking all the N such
that N is a set-generic extension of M , and all the M such that M is a ground of N
(i.e. the model on which we apply set-generic forcing to get the extension N). So,
we are adding to R all the pairs (M,x), where x is a set-generic extension of M ,
and all the pairs (y,N), where y is a ground of N . Taking this closure de�nes an
equivalence relation R∗ from R, and partitions the collection of all models of ZFC, M
in equivalence classes. Let M be the representative of any such equivalence class. All
the other members of that equivalence class are either a set-generic extension of M ,
or M is a set-generic extension of them. Consequently, we can think of the set-generic
multiverse as the equivalence relation that partitions the collection of all models of
ZFC M in the equivalence classes [M ]R = {x ∈ M | R(M,x) ∨R(x,M) }.
By taking a di�erent relation, it is possible to partition the collection M in several

di�erent ways. For example, we can consider a relation C such that C(M,N) i� N is
a class-generic extension of M , or a top-extension, and so on. When taking the closure
of all these relations, we are then de�ning just as many equivalence relations that
partitions M in di�erent ways. Each one of these partitions can then be interpreted as
a set-theoretic multiverse (e.g. a class-generic multiverse, if we take C to be relating
class-generic extensions). However, changing the relation is not the only source of
variation. Another possibility is to change the background collection of models M, for
example by considering not only the models of ZFC, but the collection of all the models
of ZF, or even weaker theories. The ultimate goal is to investigate the behaviour of all
these di�erent relations against the background of the broadest possible collection of
models: V = Mod(T ) = {M | M |= T }, where T is any set-theoretic axiomatization.
As we will see in what follows, this is the crucial step to go beyond the debate between
universism and multiversism. Finally, further variation can be achieved by changing
how we take the closure of the basic relation R. The closure described above is a very
strong closure, but it is also possible to consider some weaker closures that takes only
some of the x such that R(M,x). Or, we can consider closing R only �upward� (so only
under extensions) or only �downward� (so only under grounds). Each of these weaker
closures don't de�ne an equivalence class on M, since there will be some missing N
that is not picked up by R.
One particularly interesting question worth highlighting is the kind of properties

that the single equivalence classes have. Consider the base case again: M is the
collection of all the models of ZFC, and R∗ is the strong closure of the relation R
de�ned on set-generic extensions. Now consider two models M,N ∈ M, that are not
immediately related by R. Can we move from M to N by following R? In this basic
case, we already know that we can. To do so, we just need to go upward, by going
to an extension G of M following R, and then downward, going to another ground U
of G, until we encounter N . Moreover, it doesn't matter whether we go downward or
upward a number of times, followed by just as many trips in the opposites relation.
We can go upward and then downward, or downward and then upward, but we always
end up in the right place. This is true because, for any two models M,N , we can relate
them to the same set-generic extension, and also to the same ground, as proved by
Hamkins with his set-theoretic geology methods (Fuchs, Hamkins, and Reitz, 2015):
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Theorem 1 (Hamkins). Let M,N be two models of ZFC. Then, there exists a set-

generic extension of W such that both M and N are grounds of W . Moreover, there

exists a ground G such that both M,N are set-generic extensions of G.

While this is a very nice property of the equivalence classes de�ned in the base case,
this cannot be generalised to any case. For example, if we consider only the weak

closure of R, where we take only some of the set-generic extensions of M , and only
some of the grounds of M , then clearly the theorem fails. This is because we may be
missing the common ground between two models, or their common extension. And
with the failure of the theorem, we cannot be sure that we can always go from any two
models M,N , if not directly connected by R, since a connection between two middle
points might be missing.
The last point I want to explore is the de�nition of di�erent types of multiverses

using di�erent relations R. We already saw that we can de�ne generic multiverses in
this way, in any of their variants (so set-generic multiverses, class-generic multiverses
and hyperclass multiverses). We can also de�ne multiverses based upon di�erent kind
of extensions, like top-extensions or end-extensions. But what about other kind of
multiverses, for example Friedman's Hyperuniverse (HP )? From the literature, we
know that HP is the collection of all countable, transitive models of ZFC, de�nable
from a ground model using the in�nitary V -logic. Without getting in too many details,
this simple description lets us see a possible method to de�ne multiverses using a
relation R on a collection of models: the key lies in adding the right conditions to the
de�nition of R. For example, in the case of HP , the relation between two countable,
transitive models of ZFC, M and N , is that one is set-generic extension of the other,
and it is de�nable from the ground using V -logic. Consequently, the relation H :=
H(M,N) ⇐⇒ N = M [G] and N is de�nable in M using V -logic is a good candidate
to de�ne the relation between models inside HP . Taking the closure of this relation
H then partitions the collection M in equivalance classes, each one a hyperuniverse.
However, we said that HP is the collection of all countable, transitive models of ZFC,
so we must change also the background collection of models. Taking MC = {M |M |=
ZFC }, with M countable and transitive will give us exactly the collection needed.
Interestingly, looking at the case of HP gives us also insights on how changing the

background collection of models changes the possible ways we can partition it. Con-
sider again the basic case ofM, the collection of all models of ZFC, with no assumption
on their countability. If we then try to partition this collection by taking the closure
of the same P de�ne for HP above, we end up with �Hyperuniverse-like� multiverses.
These multiverses are V -logic Multiverses, a new type of multiverse developed by the
present author and Claudio Ternullo (Ceglie and C. Ternullo, n.d.), that foregoes the
assumption that we are working only with countable models, and instead admits also
uncountable ones. Consequently, changing the background collection of models has
deep consequences on the types of partitionings that I can perform (that is, on the
kind of multiverses I can de�ne).
The philosophical upshot of the approach just described is that it changes one of the

core assumptions behind the universism vs multiversism debate. Recall that, according
to the universist, there exists only one, unique set-theoretic universe. According to
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the multiversist, there exist several, equally legitimate, universes of set theory. This
opposition is purely on platonic grounds: both in the universist and in the multiversist
case the debate is about the existence of a particular mathematical object. But such
a dichotomy cannot be resolved: it is a purely metaphysical issue that will always
be mathematically problematic. The current project instead proposes to change the
narrative of this debate. The need of such change has already been argued by Ternullo
(C. Ternullo, 2022). His proposal is that we should di�erentiate between V-models,
i.e. the models of any set-theory, that �look like� the universe of set theory, and the
trascendent V , that instead cannot be mathematically investigated. My proposal is
similar, and highlights a possible way out of the universism-multiversism impasse.
To reiterate, according to my approach a set-theoretic multiverse is not an actual,
mathematical (platonic) object, but just a mathematical method, on the same level as
forcing or inner models, that helps grouping models of set theory by some interesting,
common feature. The universist's �unique� universe is not a particular model of set
theory (a particular V-model, following Ternullo's terminology), but the collection of
all possible models of set theory (that can then be interpreted as the �trascendent� V
from Ternullo's proposal). The set-theoretic multiverses are a method to put order in
this chaotic collection, by grouping some of the models under some unifying relations
and features.

3 Concluding remarks

In conclusion, in this paper I proposed a uni�ed framework for the set theoretic mul-
tiverse. To do so, I de�ned a binary relation R on a collection of models of set theory,
that maps two models i� they are one the (set-generic, class-generic, etc.)-extension
of the other. This opens up the possibility to study the set-theoretic multiverse in a
more uniform and uni�ed way, instead that trying to assess each single multiverse by
itself.
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